Subject: Function Hooking
Posted by Neijwiert on Wed, 24 Dec 2014 20:26:37 GMT

View Forum Message <> Reply to Message

I've been trying and trying but | just cannot figure it out. | even asked it on StackOverflow but they
aren't helping much either.

What I'm trying to achieve is: Call a custom (hook) function and then calling the original function (a
trampoline effect, whilst keeping the stack intacked between the functions).

| did somehow achieve this when | hooked into the Commands->Find_Object function, |
intercepted all calls to it and it worked fine. So | was all happy and satisfied how that worked out
and | tried to put everything in a nice class. When | did that it just stoped working. So | was like,
well yeah that sometimes happens you mess up some simple thing whilst copying it over. So |
moved everything back to the old (messy) code and to my surprise that stoped working aswell...

My new code is actually pretty much a complete mirror and | doubt that the copy pasting went
wrong so I'm just gonna put that version here in the hopes somebody of the renegade community
can help me to find the problem.

| have the following header file:
Toggle Spoiler

#ifndef TIMEMACHINE_INCLUDE__ DETOURS_H
#define TIMEMACHINE_INCLUDE__ DETOURS_H

#define Detours DetourClass::Get_Instance()

class DetourClass

{

friend class TimeMachine;

private:
struct DetourFunction
{
DetourFunction(ULONG ID, BYTE *OriginalFunction, BYTE *HookFunction, BYTE
*QriginalFunctionCode)
{
this->ID = ID;
this->OriginalFunction = OriginalFunction;
this->HookFunction = HookFunction;
this->OriginalFunctionCode = OriginalFunctionCode;

}

~DetourFunction()

{

free(this->OriginalFunctionCode);

}

Page 1 of 11 ---- Cenerated from Command and Conquer: Renegade Oficial Foruns

http://renegadeforums.com/index.php?t=usrinfo&id=25065
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490115#msg_490115
http://renegadeforums.com/index.php?t=post&reply_to=490115
http://renegadeforums.com/index.php

ULONG ID;

BYTE *OriginalFunction;
BYTE *HookFunction;

BYTE *OriginalFunctionCode;

J§

public:

ULONG Install_Detour(BYTE *TargetAddress, BYTE *HookAddress);
void Remove_Detour(ULONG ID);

void Remove_All_Detours();

long Jump_To_Original(ULONG ID);

static DetourClass *Get_Instance();
protected:

DetourClass();

~DetourClass();

static DetourClass *Instance;
private:
int Calculate_Offset_ Address(BYTE *StartAddress, BYTE *TargetAddress);

ULONG _FreelD;
SimpleDynVecClass<DetourFunction *> _Functions;

J§

#endif

Which has the following source file:
Toggle Spoiler

#include "General.h"
#include "engine.h"
#include "Detours.h"

static const unsigned int IMP32_SZ = 5; // the size of JMP <address>
static const unsigned int NOP = 0x90; // opcode for NOP
static const unsigned int IMP = OxE9; // opcode for JUMP

DetourClass::DetourClass()

{

this->_FreelD = 1,

}
DetourClass::~DetourClass()
{

Page 2 of 11 ---- Cenerated from Command and Conquer: Renegade Oficial Foruns

http://renegadeforums.com/index.php

Remove_All_Detours();

}

#pragma optimize(", off)

ULONG DetourClass::Install_Detour(BYTE *TargetAddress, BYTE *HookAddress)

{

DWORD OldProtect;

if ("VirtualProtect(TargetAddress, IMP32_SZ, PAGE_EXECUTE_READWRITE, &OldProtect)) //
Make sure we are allowed to modify that memory area

{

return O;

}

BYTE *OriginalCode = (BYTE *)malloc(JMP32_SZ); // Reserve space to store the overwritten
data of the original part

memcpy(OriginalCode, TargetAddress, IMP32_SZ); // Copy original part of the function
memset(TargetAddress, NOP, JIMP32_SZ); // Good practice to NOP original part

/Il Insert a jump to the hook function in the original code

int HookJumpOffset = Calculate_Offset Address(TargetAddress, HookAddress);
TargetAddress[0] = JMP;

memcpy(TargetAddress + 1, &HookJumpOffset, 4);

T ||

VirtualProtect(TargetAddress, IMP32_SZ, OldProtect, NULL);

ULONG NewlID = this->_FreelD++;
this->_Functions.Add(new DetourFunction(NewID, TargetAddress, HookAddress, OriginalCode));

return NewlD;

}

#pragma optimize(™, on)

void DetourClass::Remove_Detour(ULONG ID)
{

if (ID == 0)

{

return;

}

for (int x = this->_Functions.Count() - 1; x >= 0; x--)

{

DetourFunction *CurFunction = this->_Functions[x];

if (CurFunction->ID == ID) // Check if the current detour has the same target as the one we're
trying to remove

{

this->_Functions.Delete(x); // Remove that one

Page 3 of 11 ---- Cenerated from Command and Conquer: Renegade Oficial Foruns

http://renegadeforums.com/index.php

/I Try to restore to old situation
DWORD OldProtect;

if (VirtualProtect(CurFunction->OriginalFunction, IMP32_SZ, PAGE_EXECUTE_READWRITE,
&OldProtect))

{
memcpy(CurFunction->OriginalFunction, CurFunction->OriginalFunctionCode, JMP32_SZ); //
Copy original code back

VirtualProtect(CurFunction->OriginalFunction, IMP32_SZ, OldProtect, NULL);

}
T T

delete CurFunction; // Free up resources

return;

}
}
}

void DetourClass::Remove_All_Detours()

{

for (int x = this->_Functions.Count() - 1; x >= 0; x--)

{

DetourFunction *CurFunction = this->_Functions[X];

/I Try to restore to old situation

DWORD OldProtect;

if (VirtualProtect(CurFunction->OriginalFunction, IMP32_SZ, PAGE_EXECUTE_READWRITE,
&OldProtect))

{
memcpy(CurFunction->OriginalFunction, CurFunction->OriginalFunctionCode, JMP32_SZ); //
Copy original code back

VirtualProtect(CurFunction->OriginalFunction, JIMP32_SZ, OldProtect, NULL);
}
T L T

delete CurFunction; // Free up resources

}

this->_Functions.Delete_All();

}

long DetourClass::Jump_To_Original(ULONG ID)
{

if (ID ==0)

{

return NULL;

Page 4 of 11 ---- Cenerated from Command and Conquer: Renegade Oficial Foruns

http://renegadeforums.com/index.php

}

for (int x = this->_Functions.Count() - 1; X >= 0; x--)

{

DetourFunction *CurFunction = this->_Functions[X];
if (CurFunction->ID == ID)

{
BYTE *ASMCode = (BYTE *)VirtualAlloc(0, IMP32_SZ + JMP32_SZ, MEM_COMMIT,

PAGE_EXECUTE_READWRITE); // Reserve space for run-time generated asm code

memcpy(ASMCode, CurFunction->OriginalFunctionCode, JIMP32_SZ); // Copy the original code
to the beginning

int OriginalJumpOffset = Calculate_Offset_Address(ASMCode + JMP32_SZ,
CurFunction->OriginalFunction + JMP32_SZ); // Calculate jump offset to original function

ASMCode[JMP32_SZ] = JMP; // Insert the jump opcode

memcpy(ASMCode + JMP32_SZ + 1, &OriginalJumpOffset, 4); // Copy the jump address

long ReturnValue = ((long(*)(void))ASMCode)(); // Execute the code and get the return value (if
any)

VirtualFree(ASMCode, JIMP32_SZ + JMP32_SZ, MEM_DECOMMIT); // Free the code

return ReturnValue;

}
}

return NULL;
}

DetourClass *DetourClass::Get_Instance()

{

return DetourClass::Instance;

}

int DetourClass::Calculate_Offset Address(BYTE *StartAddress, BYTE *TargetAddress)

{
return (((int)TargetAddress - (int)StartAddress) - IMP32_SZ);

}

DetourClass *DetourClass::Instance = NULL;

In my plugin source file | have these calls to the DetourClass:
Toggle Spoiler

ULONG ObjectHookID = 0;

Page 5 of 11 ---- Cenerated from Command and Conquer: Renegade Oficial Foruns

http://renegadeforums.com/index.php

ULONG FooHookID = 0;
int Foo()

{

Console_Output("Normal Foo\n");

return 5;

}

int Foo_Hook()

{
Console_Output("Hook Foo\n");

return (int)Detours->Jump_To_Original(FooHookID);

}

GameObiject *Find_Object_Hook(int obj_id)

{
Console_Output("Finding object with id: %d\n", obj_id);

return (GameObiject *)Detours->Jump_To_Original(ObjectHooklID);
}

TimeMachine::TimeMachine()

{

DetourClass::Instance = new DetourClass();
RegisterEvent(EVENT_LOAD_LEVEL_HOOK, this);
//ObjectHookID = Detours->Install_Detour(&Commands->Find_Object, &Find_Object_Hook);

FooHookID = Detours->Install_Detour((BYTE *)&Foo, (BYTE *)&Foo_Hook);
if (FooHookID == 0)

{
Console_Output("Install failed\n");
}
}
TimeMachine::~TimeMachine()
{

delete DetourClass::Instance;
UnregisterEvent(EVENT_LOAD_LEVEL_ HOOK, this);

Console_Output(_ FUNCTION__ "\n");
}

void TimeMachine::OnLoadLevel()

{
Console_Output("%d\n", Foo());

Page 6 of 11 ---- Cenerated from Command and Conquer: Renegade Oficial Foruns

http://renegadeforums.com/index.php

Where TimeMachine is my plugin class (So the constructor gets called when SSGM loads the
library). | have checked if the memory is actually changed after my function calls and it is indeed
changed to the correct variables. But as soon as | call Foo() it just executes it as if nothing
changed. The reason that | have it in OnLoadLevel is becouse in one of my earlier tests it started
working when | moved it to OnLoadLevel (so outside the constructor). The reason why I'm not
trying to hook Find_Object right now is becouse when internal engine calls go to Find_Object
when the game starts it crashes the fds instantly (The hooking in the constructor goes without any
problems).

If somebody comes up with a solution or pushes me in the right direction that would be greatly
apreciated!

Subject: Re: Function Hooking
Posted by jonwil on Wed, 24 Dec 2014 21:42:45 GMT

View Forum Message <> Reply to Message

If you want to hook Commands->Find_Object, just read the address out of that variable (the
"original" Find_Obiject) then replace it with the address of your new function.
Your new funxtion would then call the stock function through the pointer you saved ealier.

p

Subject: Re: Function Hooking
Posted by Neijwiert on Thu, 25 Dec 2014 00:41:32 GMT

View Forum Message <> Reply to Message

jonwil wrote on Wed, 24 December 2014 14:42If you want to hook Commands->Find_Object, just
read the address out of that variable (the "original" Find_Obiject) then replace it with the address
of your new function.

Your new funxtion would then call the stock function through the pointer you saved ealier.

p

That would result in an infinite loop? For example:

typedef GameObject *(** FindObjectPointer)(int);
FindObjectPointer OriginalFindObject;

GameObiject *Find_Object_Test(int obj_id)

{

Console_Output("Finding object with id: %d\n", obj_id);

return (* OriginalFindObject)(obj_id);

Page 7 of 11 ---- Cenerated from Command and Conquer: Renegade O ficial Foruns

http://renegadeforums.com/index.php?t=usrinfo&id=40
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490117#msg_490117
http://renegadeforums.com/index.php?t=post&reply_to=490117
http://renegadeforums.com/index.php?t=usrinfo&id=25065
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490118#msg_490118
http://renegadeforums.com/index.php?t=post&reply_to=490118
http://renegadeforums.com/index.php

}

TimeMachine:: TimeMachine()

{
OriginalFindObject = &Commands->Find_Object;
*&Commands->Find_Object = &Find_Object_Test;

}

The OriginalFindObject would point right back to the hooked one. Im trying to catch all calls to the
original method and then do some stuff. I'm just using Find_Object as an example, the actual
command I'm going to target is Start_Timer.

When | compile and run this I get an infinite loop.

NOTE: I'm also trying to catch calls to the method outside of my DLL. So there's no other way
than memory hooking it with a jump? Or am | just thinking to difficult right now?

Subject: Re: Function Hooking
Posted by jonwil on Thu, 25 Dec 2014 01:29:05 GMT

View Forum Message <> Reply to Message

do this:
OriginalFindObject = Commandsf>Find_Object;
Commands->Find_Object = Find_Object_Test;

then later do
eturn OriginalFindObject(bj_id);

Subject: Re: Function Hooking
Posted by Neijwiert on Thu, 25 Dec 2014 12:37:22 GMT

View Forum Message <> Reply to Message

| must be completly retarded...

Talking about taking the hard route...

Well thanks, it works. But I'm still kind of curious as to why my first approach doesn't work. It isn't
even affecting the execution of the original function, yet I'm overwriting memory.

Subject: Re: Function Hooking
Posted by iRANian on Sun, 28 Dec 2014 14:05:21 GMT

Page 8 of 11 ---- Cenerated from Conmand and Conquer: Renegade O ficial Foruns

http://renegadeforums.com/index.php?t=usrinfo&id=40
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490121#msg_490121
http://renegadeforums.com/index.php?t=post&reply_to=490121
http://renegadeforums.com/index.php?t=usrinfo&id=25065
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490125#msg_490125
http://renegadeforums.com/index.php?t=post&reply_to=490125
http://renegadeforums.com/index.php?t=usrinfo&id=25967
http://renegadeforums.com/index.php

View Forum Message <> Reply to Message

What you can also do is place a JMP at the very start of the original function to your own hook.
Then when you want to call the original function you re-create the first 5 bytes you overwrote in
assembly then just jmp 5 bytes into the original function.

function:

push ebp ; byte 1
push edi ; byte 2
push esi ; byte 3
push ebx ; byte 4
push ecx ; byte 5
push edx ; byte 6

Then after jumping hooking:

function:
jmp <hookfunc> ; byte 1-5
push edx ; byte 6

void HookFunc()

{
blabla

}

void _declspec(naked)Call original func()

{

_asm
{

push ebp ; byte 1

push edi ; byte 2

push esi ; byte 3

push ebx ; byte 4

push ecx ; byte 5

jmp to byte 6; where 'push edx' is located

}
}

Subject: Re: Function Hooking
Posted by Neijwiert on Sun, 28 Dec 2014 17:58:22 GMT

View Forum Message <> Reply to Message

iIRANian wrote on Sun, 28 December 2014 07:05What you can also do is place a JMP at the very
start of the original function to your own hook. Then when you want to call the original function you
re-create the first 5 bytes you overwrote in assembly then just jmp 5 bytes into the original

Page 9 of 11 ---- Cenerated from Command and Conquer: Renegade O ficial Foruns

http://renegadeforums.com/index.php?t=rview&th=40901&goto=490170#msg_490170
http://renegadeforums.com/index.php?t=post&reply_to=490170
http://renegadeforums.com/index.php?t=usrinfo&id=25065
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490171#msg_490171
http://renegadeforums.com/index.php?t=post&reply_to=490171
http://renegadeforums.com/index.php

function.

function:

push ebp ; byte 1
push edi ; byte 2
push esi ; byte 3
push ebx ; byte 4
push ecx ; byte 5
push edx ; byte 6

Then after jumping hooking:

function:
jmp <hookfunc> ; byte 1-5
push edx ; byte 6

void HookFunc()

{
blabla

}

void _declspec(naked)Call original func()

{

_asm
{

push ebp ; byte 1

push edi ; byte 2

push esi ; byte 3

push ebx ; byte 4

push ecx ; byte 5

jmp to byte 6; where 'push edx' is located

}
}

That was exactly what | was trying to achieve in my first attempt. Yet it somehow didn't jump to the
new function, If you toggle the spoilers in the first post you can see how I tried it.

Subject: Re: Function Hooking
Posted by iRANian on Tue, 30 Dec 2014 23:39:06 GMT

View Forum Message <> Reply to Message

Yeah | saw that, but you're doing some complicated memory copying code.

Page 10 of 11 ---- Cenerated from Command and Conquer: Renegade Official Foruns

http://renegadeforums.com/index.php?t=usrinfo&id=25967
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490187#msg_490187
http://renegadeforums.com/index.php?t=post&reply_to=490187
http://renegadeforums.com/index.php

Subject: Re: Function Hooking
Posted by Neijwiert on Wed, 31 Dec 2014 01:35:15 GMT

View Forum Message <> Reply to Message

iRANian wrote on Tue, 30 December 2014 16:39Yeah | saw that, but you're doing some
complicated memory copying code.

How else can you execute the first 5 bytes then again if you don't store that anywhere?

Subject: Re: Function Hooking
Posted by iRANian on Sun, 11 Jan 2015 15:18:47 GMT

View Forum Message <> Reply to Message

By using a nakedspec function with asm

void _declspec(naked) blabla()
{

_asm
{

Il epilogue (first 5 bytes or so)
push esp

push ebp

push edx

push ebx

push ecx

jmp FunctionAddress+5 //or just the direct adress

}
}

Page 11 of 11 ---- Cenerated from Command and Conquer: Renegade Official Foruns

http://renegadeforums.com/index.php?t=usrinfo&id=25065
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490190#msg_490190
http://renegadeforums.com/index.php?t=post&reply_to=490190
http://renegadeforums.com/index.php?t=usrinfo&id=25967
http://renegadeforums.com/index.php?t=rview&th=40901&goto=490302#msg_490302
http://renegadeforums.com/index.php?t=post&reply_to=490302
http://renegadeforums.com/index.php

