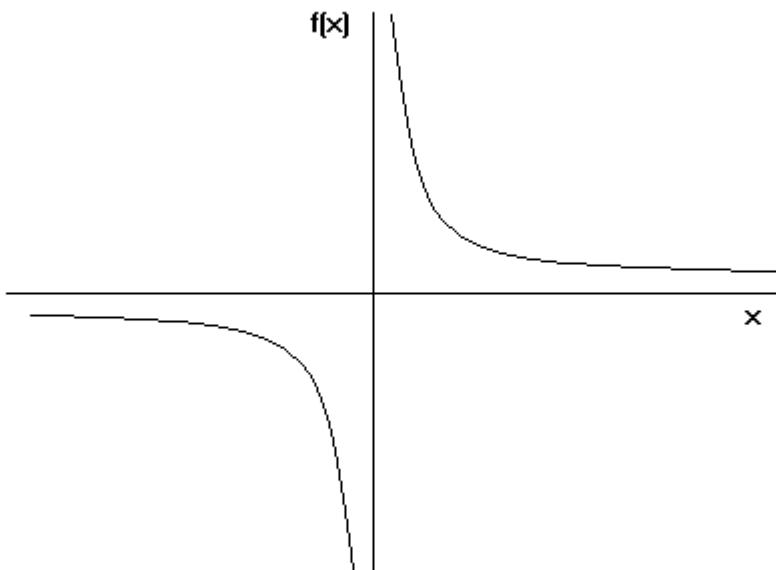

Subject: Re: Math Question #1

Posted by [archerman](#) on Tue, 11 Nov 2008 11:08:33 GMT

[View Forum Message](#) <> [Reply to Message](#)

nopol10 wrote on Tue, 11 November 2008 11:38Actually, $\lim(5/x, x, 0)$ (Limit of $5/x$ as $x \rightarrow 0$) is not infinity as limit of $5/x$ as $x \rightarrow 0$ from the negative side and the limit of $5/x$ as $x \rightarrow 0$ from the positive side are not equal. Therefore the limit is undefined. It is infinity only when $x \rightarrow 0$ from the positive side and negative infinity when $x \rightarrow 0$ from the negative side.


you are right. the graph of $y=5/x$ is similar to $y=1/x$ which is like:

so limit doesn't exist.

File Attachments

1) [1overx.gif](#), downloaded 978 times

2) [solution.JPG](#), downloaded 777 times

$$\lim_{x \rightarrow 0} \frac{\sin 5x}{2-2\cos x}$$

$$\lim_{x \rightarrow 0} \frac{\sin 5x}{2(1-\cos x)} \quad \begin{aligned} \cos x &= 1 - 2\sin^2(x/2) \\ 1 - \cos x &= 2\sin^2(x/2) \end{aligned}$$

$$\lim_{x \rightarrow 0} \frac{\sin 5x}{4\sin^2(x/2)} \quad (\text{eqn. 1})$$

$$\lim_{x \rightarrow 0} \frac{5\sin 5x}{\frac{5x}{\frac{\sin^2(x/2)}{(x/2)^2} x}} \quad (\text{when simplified, we have eqn.1})$$

$$\lim_{x \rightarrow 0} \frac{5}{x}$$

for 0- limit is at - infinity
for 0+ limit is at +infinity => limit doesn't exist.
